80 research outputs found

    Bistability and hysteresis of the 'Secteur' differentiation are controlled by a two-gene locus in Nectria haematococca

    Get PDF
    BACKGROUND: Bistability and hysteresis are increasingly recognized as major properties of regulatory networks governing numerous biological phenomena, such as differentiation and cell cycle progression. The full scope of the underlying molecular mechanisms leading to bistability and hysteresis remains elusive. Nectria haemaotcocca, a saprophytic or pathogenic fungus with sexual reproduction, exhibits a bistable morphological modification characterized by a reduced growth rate and an intense pigmentation. Bistability is triggered by the presence or absence of σ, a cytoplasmic determinant. This determinant spreads in an infectious manner in the hyphae of the growing margin, insuring hysteresis of the differentiation. RESULTS: Seven mutants specifically affected in the generation of σ were selected through two different screening strategies. The s(1 )and s(2 )mutations completely abolish the generation of σ and of its morphological expression, the Secteur. The remaining five mutations promote its constitutive generation, which determines an intense pigmentation but not growth alteration. The seven mutations map at the same locus, Ses (for 'Secteur-specific'). The s(2 )mutant was obtained by an insertional mutagenesis strategy, which permitted the cloning of the Ses locus. Sequence and transcription analysis reveals that Ses is composed of two closely linked genes, SesA, mutated in the s(1 )and s(2 )mutant strains, and SesB, mutated in the s* mutant strains. SesB shares sequence similarity with animal and fungal putative proteins, with potential esterase/lipase/thioesterase activity, whereas SesA is similar to proteins of unknown function present only in the filamentous fungi Fusarium graminearum and Podospora anserina. CONCLUSIONS: The cloning of Ses provides evidence that a system encoded by two linked genes directs a bistable and hysteretic switch in a eukaryote. Atypical regulatory relations between the two proteins may account for the hysteresis of Secteur differentiation

    FORECAST: a flexible software to forward model cosmological hydrodynamical simulations mimicking real observations

    Full text link
    We present FORECAST, a new flexible and adaptable software package that performs forward modeling of the output of any cosmological hydrodynamical simulations to create a wide range of realistic synthetic astronomical images. With customizable options for filters, field of view size and survey parameters, it allows users to tailor the synthetic images to their specific requirements. FORECAST constructs light-cone exploiting the output snapshots of a simulation and computes the observed flux of each simulated stellar element, modeled as a Single Stellar Population, in any chosen set of pass-band filters, including k-correction, IGM absorption and dust attenuation. As a first application, we emulated the GOODS-South field as observed for the CANDELS survey exploiting the IllustrisTNG simulation. We produce images of 200 sq. arcmin., in 13 bands (eight Hubble Space Telescope optical and near-infrared bands from ACS B435 to WFC3 H160, the VLT HAWK-I Ks band, and the four IRAC filters from Spitzer), with depths consistent with the real data. We analysed the images with the same processing pipeline adopted for real data in CANDELS and ASTRODEEP publications, and we compared the results against both the input data used to create the images, and real data, generally finding good agreement with both, with some interesting exceptions which we discuss. As part of this work, we release the FORECAST code and two datasets: the CANDELS dataset analyzed in this study, and 10 JWST CEERS survey-like images (8 NIRCam and 2 MIRI) in a field of view of 200 sq. arcmin. between z=0-20. FORECAST is a flexible tool: it creates images that can then be processed and analysed using standard photometric algorithms, allowing for a consistent comparison among observations and models, and for a direct estimation of the biases introduced by such techniques.Comment: 21 pages, 15 figures, 6 tables, submitted to A&

    Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus

    No full text
    International audienceReconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements , and protein divergence into a single evolutionary framework

    Invariant mass dependence of particle correlations in hadronic final states from the decay of the Z0^0

    Get PDF

    Search for decays of B-0 -> e(+)e(-), B-0 -> mu(+)mu(-), B-0 -> e(+/-)mu(-/+)

    Get PDF
    We present a search for the decays B-0 -> e(+)e(-), B-0 ->mu(+)mu(-), and B-0 -> e(+/-)mu(-/+) in data collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC B Factory. Using a data set of 111 fb(-1), we find no evidence for a signal in any of the three channels investigated and set the following branching fraction upper limits at the 90% confidence level: B(B-0 -> e(+)e(-))mu(+)mu(-)) e(+/-)mu(-/+))< 18x10(-8)

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore